Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Hui Zhang, ${ }^{\text {a }}$ Zhong-Yu Lin, ${ }^{\text {a }}$
Zhao-Hui Zhou ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$
${ }^{\text {a Department of Chemistry and State Key }}$ Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zhzhou@xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
ωR factor $=0.130$
Data-to-parameter ratio $=7.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(cinchonidinium) l-tartrate dihydrate

Bis- $(3 R, 4 S, 8 S, 9 R)$-cinchonidinium $(2 R, 3 R)$-tartrate dihydrate, $2 \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is a hydrated salt of cinchonidine, in which the two protonated quinuclidinic nitrogen groups interact with the ionized carboxylate group of the tartrate; the latter has twofold symmetry. The water molecule interacts with the hydroxyl group of the cation and the O atoms of the carboxylate residues to afford a three-dimensional network structure.

Comment

Cincona alkaloids are widely used for the resolution of racemic acids and tartaric acid is commonly employed for the separation of optically active bases (Eliel, 1996; Collet, 1999). Amongst these alkaloids, ($3 R, 4 S, 8 R, 9 S$)-cinchonan-9-ol owes its physiological activity to the stereochemistry of the chiral atoms C8 and C9; also to the amino group (on the C8 atom) and the hydroxyl group (on the C 9 atom) forming hydrogen bonds with receptors. This alkaloid, when treated with one molar equivalent of tartaric acid, affords cinchoniniumbitartrate tetrahydrate (Puliti et al., 2001); the bitartrate anions are linked by a carboxyl-hydroxyl hydrogen bond into a chain running along the b axis of the monoclinic unit cell. When the stereochemistry of the alkaloid is altered to $8 S, 9 R$, as in $(3 R, 4 S, 8 S, 9 R)$-cinchonan- $9-\mathrm{ol}$, the synthesis furnishes the title diammonium tartrate, (I), as a dihydrate (see Scheme, Fig. 1 and Table 1). The asymmetric unit comprises the cinchonidinium cation, one water molecule and half the tartrate dianion; the latter lies on a twofold axis.

(I)

The carboxylic acid group of the tartrate anion shows almost equivalent bond lengths, consistent with deprotonation. The carboxyl atom O 2 is strongly hydrogen bonded to the aliphatic ammonium group $[\mathrm{N} \cdots \mathrm{O}=2.694$ (3) \AA] and the atom O 4 is linked to the hydroxyl group within the same anion $[\mathrm{O} \cdots \mathrm{O}=2.616(3) \AA$ A . The water molecule interacts with the hydroxyl group of the cation and two O atoms of carboxylate groups, derived from two different anions, to afford a threedimensional network motif. Hydrogen-bonding contacts are summarized in Table 2. The crystal packing is somewhat less compact than that of cinchoninium-bitartrate tetrahydrate, as

Received 23 December 2002
Accepted 8 January 2003
Online 17 January 2003

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
noted from the densities of the two salts, which are 1.308 and $1.332 \mathrm{Mg} \mathrm{m}^{-3}$ for the di- and tetrahydrates, respectively (Puliti et al., 2001).

Experimental

Cinchonidine ($2.94 \mathrm{~g}, 10 \mathrm{mmol}$) and l-tartaric acid ($0.75 \mathrm{~g}, 5 \mathrm{mmol}$) were dissolved in a small volume of 50:50 ethanol-water; the solution was kept at about 333 K for 10 h . The dihydrate separated from the solution in 80% yield. Found (calculated) for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{10}$: C 64.8 (65.1), H 7.1 (7.0), N 7.0% (7.2%). IR (KBr pellet): CO_{2} (asymmetric) 1593,$1509 ; \mathrm{CO}_{2}$ (symmetric) $1457,1419,1391 \mathrm{~cm}^{-1}$.

Crystal data

$2 \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-} .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=774.89$
Monoclinic, C2
$a=19.960$ (3) \AA
$b=6.625(2) \AA$
$c=15.530(2) \AA$
$\beta=106.68(1)^{\circ}$
$V=1967.2$ (7) \AA^{3}
$Z=2$
$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=15.1-19.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Block, colorless
$0.38 \times 0.30 \times 0.22 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.498, T_{\text {max }}=0.876$
4178 measured reflections
2094 independent reflections
1703 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.130$
$S=1.11$
2094 reflections
268 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C10	1.413 (4)	C6-C7	1.423 (5)
$\mathrm{O} 2-\mathrm{C} 20$	1.267 (4)	C7-C8	1.369 (5)
O3-C20	1.236 (5)	C7-C10	1.519 (4)
O4-C21	1.407 (4)	C8-C9	1.414 (5)
N1-C14	1.497 (5)	C10-C11	1.528 (4)
N1-C11	1.505 (3)	C11-C12	1.539 (4)
N1-C16	1.505 (5)	C12-C13	1.518 (4)
N2-C9	1.298 (7)	C13-C17	1.527 (6)
N2-C1	1.363 (6)	C13-C15	1.539 (5)
C1-C2	1.409 (7)	C14-C15	1.525 (4)
C1-C6	1.429 (4)	C16-C17	1.548 (4)
C2-C3	1.366 (8)	C17-C18	1.497 (5)
C3-C4	1.399 (6)	C18-C19	1.284 (6)
C4-C5	1.366 (6)	C20-C21	1.530 (4)
C5-C6	1.410 (5)	C21-C21 ${ }^{\text {i }}$	1.526 (5)
C14-N1-C11	113.7 (3)	C7-C10-C11	107.1 (2)
C14-N1-C16	109.6 (2)	N1-C11-C10	113.1 (2)
C11-N1-C16	107.8 (2)	N1-C11-C12	107.9 (2)
C9-N2-C1	117.6 (3)	C10-C11-C12	114.0 (3)
N2-C1-C2	118.8 (4)	C13-C12-C11	109.2 (2)
N2-C1-C6	122.7 (4)	C12-C13-C17	111.2 (3)
C2-C1-C6	118.5 (4)	C12-C13-C15	108.5 (3)
C3-C2-C1	121.6 (4)	C17-C13-C15	108.4 (3)
C2-C3-C4	120.1 (5)	N1-C14-C15	109.5 (3)
C5-C4-C3	119.8 (5)	C14-C15-C13	108.7 (3)
C4-C5-C6	121.9 (3)	N1-C16-C17	109.2 (3)
C5-C6-C7	124.7 (3)	C18-C17-C13	112.7 (3)
C5-C6-C1	118.0 (4)	C18-C17-C16	112.9 (3)
C7-C6-C1	117.2 (4)	C13-C17-C16	108.2 (3)
C8-C7-C6	118.7 (3)	C19-C18-C17	124.4 (4)
C8-C7-C10	119.9 (3)	$\mathrm{O} 3-\mathrm{C} 20-\mathrm{O} 2$	125.1 (3)
C6-C7-C10	121.3 (3)	O3-C20-C21	117.5 (3)
C7-C8-C9	119.0 (4)	O2-C20-C21	117.4 (3)
N2-C9-C8	124.7 (4)	$\mathrm{O} 4-\mathrm{C} 21-\mathrm{C} 21^{\text {i }}$	110.5 (2)
O1-C10-C7	111.7 (3)	O4-C21-C20	110.4 (3)
O1-C10-C11	110.0 (2)	C21 ${ }^{\text {i }}$ - $21-\mathrm{C} 20$	108.8 (3)

Symmetry code: (i) $2-x, y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O} 1 W$	$0.84(1)$	$1.91(2)$	$2.722(4)$	$162(4)$
N1-H1N $\cdots \mathrm{O} 2^{\mathrm{i}}$	$0.87(1)$	$1.83(1)$	$2.694(3)$	$177(3)$
O4-H4O $\cdots \mathrm{O} 3$	$0.85(1)$	$2.12(4)$	$2.616(3)$	$117(4)$
O1W-H1W1 \cdots O2	$0.87(1)$	$1.86(2)$	$2.712(5)$	$167(5)$
O1 $^{\mathrm{H}} W-\mathrm{H} 1 W 2 \cdots 3^{\mathrm{i}}$	$0.86(1)$	$2.23(2)$	$3.071(5)$	$166(5)$

Symmetry code: (i) $x, y-1, z$.

The H atoms bonded to the N and O atoms were located and refined, subject to $\mathrm{N}-\mathrm{H}=\mathrm{O}-\mathrm{H}=0.85 \pm 0.01 \AA$; for the water H atoms, the $\mathrm{H} \cdots \mathrm{H}$ distance was set to $1.39 \pm 0.01 \AA$. The C-bound H atoms were included in the riding-model approximation. The $U_{\text {iso }}$ values of all H atoms were set at 1.2 times those of their parent atoms. The calculation of the Flack (1983) parameter was suppressed by the use of the MERG 4 instruction in SHELXL97. The absolute structure was determined on the basis of the known configuration of L tartrate.

Data collection: CAD-4 VAX/PC (Enraf-Nonius, 1988); cell refinement: $C A D-4 V A X / P C$; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant No. 29973032), Xiamen University and the University of Malaya (F0717/2002A) for supporting this work.

References

Collet, A. (1999). Enantiomer, 4, 157-172.
Eliel, E. L. (1996). Croat. Chem. Acta, 69, 519-533.

Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Enraf-Nonius, Scientific Instruments Division, PO Box 483, 2600 AL Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst, A39, 876-881.
Harms, K. (1997). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Puliti, R., Mattia, C. A., De Fazio, A., Ghiara, M. R. \& Mazzarella, L. (2001). Acta Cryst. C57, 1447-1449.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

